A Newton algorithm for invariant subspace computation with large basins of attraction

نویسندگان

  • P.-A. Absil
  • R. Sepulchre
  • P. Van Dooren
  • R. Mahony
چکیده

We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Invariant Tori by Newton-Krylov Methods in Large-Scale Dissipative Systems

A method to compute invariant tori in high-dimensional systems, obtained as discretizations of PDEs, by continuation and Newton-Krylov methods is described. Invariant tori are found as fixed points of a generalized Poincaré map without increasing the dimension of the original system. Due to the dissipative nature of the systems considered, the convergence of the linear solvers is extremely fast...

متن کامل

New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups

In this paper, a new  algorithm for computing secondary invariants of  invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants.  The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...

متن کامل

On the Unfolding of a Blowout Bifurcation

Suppose a chaotic attractor A in an invariant subspace loses stability on varying a parameter At the point of loss of stability the most positive Lya punov exponent of the natural measure on A crosses zero at what has been called a blowout bifurcation We introduce the notion of an essential basin of an attractor with an invari ant measure This is the set of points such that the set of measures ...

متن کامل

Adaptive Eigenvalue Computations Using Newton's Method on the Grassmann Manifold

We consider the problem of updating an invariant subspace of a Hermitian, large and struc-tured matrix when the matrix is modiied slightly. The problem can be formulated as that of computing stationary values of a certain function, with orthogonality constraints. The constraint is formulated as the requirement that the solution must be on the Grassmann manifold, and Newton's method on the manif...

متن کامل

Newton's method's basins of attraction revisited

In this paper, we revisit the chaotic number of iterations needed by Newton's method to converge to a root. Here, we consider a simple modified Newton method depending on a parameter. It is demonstrated using polynomiography that even in the simple algorithm the presence and the position of the convergent regions, i.e. regions where the method converges nicely to a root, can be complicatedly a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003